
Abstract
Component-based technologies are recently used to

implement complex distributed systems. Testing of these
systems becomes even more complicated. New test methods
need to be investigated. Components of a system under test
communicate via well-defined interfaces. It is to validate
the behavior of (a set of) components at their interfaces.
The paper proposes to build a test system itself from test
components, which interact with the components under test
via their interfaces. For the development of such test
systems, a UML framework is used which contains base
types for test components with generic behavior for the
setup and configuration of a test system and for the
exchange of coordination messages between test
components. The paper discusses the aspect of automatic
code genera t ion o f t e s t componen ts f rom UML
specifications of test systems. An example of using the test
framework is given.

Keywords
Test framework, UML, code generation, components-

based systems, distributed testing

1. Introduction

Component-based technologies are considered to
be adequate for distributed applications operating in
heterogeneous environments. A component is in
general a replaceable part of a system. Emerging
component frameworks, for example, CORBA,
COM+, EJB are in their nature Object-Oriented (OO)
technologies, which model components as objects that
provide services at interfaces. Interfaces are specified
by means of signature and interaction scenarios with
context-dependencies, if needed.

Component-based technologies that lead to greater
flexibility, generality and productivity bring new
challenge but also new possibilities to testing
distributed systems.

According to [11], the concurrent nature of
distributed systems is the source of making their

testing harder than testing sequential systems:
• The probe effect, which reflects the effect of

changed behavior of a system when attempting to
observe it, may occur.

• Racing conditions in concurrent activities may
lead to non-reproducible behavior.

• A synchronized global clock has to be realized for
observability of test events.
 Both [4] and [11] propose a test methodology that

tests components at first in isolation and then in
combination. [12] discusses that a test system for a
component-based system should be designed such that
the test system mirrors the component structure of the
system under test, i.e. there is a one-to-one mapping of
components of the system under test to components of
the test system.

Such a test architecture allows an immediate
reflection of interaction scenarios of interfaces to be
tested within the test component attached to this
interface. In addition, this test architecture allows to
distribute the test system itself in order to locate test
components nearby the components under test. A
distributed test system is of particular advantage for
reducing the impact of transmission delays while
controlling and observing the system under test (SUT)
by the test system (TS). This is significant for delay-
critical tests, e.g. performance tests.

Practical experiences of testing a TINA access
session server [3] have shown that a number of
concepts and mechanisms used for functional testing
of a distributed test system are also applicable and re-
usable for other types of testing such as performance
and scalability testing. Generalization of basic
concepts and mechanism for a wider class of test types
lead to a set of generic test components. These generic
(i.e. abstract) test components are the basis for
developing dedicated TS consisting of a set of specific
(i.e. concrete) test components by their specialization.

UML Framework for Automated Generation of
Component-Based Test Systems

Marc Born, Ina Schieferdecker and Mang Li

GMD FOKUS
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

phone: +49 30 3463-7000, fax: +49 30 3463-8000

{born, schieferdecker, m.li}@fokus.gmd.de
www.fokus.gmd.de

The set of generic test components in combination
with rules and guidelines for their specialization
constitute a so called test framework (TF) for
distributed component-based systems. TF is the main
subject of this paper.

Test development is a t ime- and resource-
consuming activity. One of the most important aspect
gained from generalizing the underlying concepts and
mechanisms with generic test components in the TF is
the increased efficiency in developing a concrete
distributed test system. Only attention to the specific
test objectives is required. The general things are
inherited from the test framework.

A c o n s i s t e n t , e x t e n s i b l e a n d e a s y t o u s e
specification of the test framework is needed to make
it practical. An adequate specification technique has to
be selected. Unified Modeling Language (UML [6]) is
a widely accepted modeling language for OO systems.
In fact, UML combines a number of modern OO
techniques, such as OMT, Statecharts, OCL (Object
Constraint Language). The flexibility of UML is
supported by extension mechanisms (e.g. stereotypes)
and well-formedness rules (e.g. OCL).

A comprehensive introduction to UML from the
testing perspective is given in [1]. It discusses
generally the limitations of UML diagrams and
possible extensions for adequate test models.

In comparison to this approach, our test framework
targets the system or application level testing. It
contains an architecture for component-based,
distributed test systems. It also proposes to specify
such test systems by structural and dynamic models
using UML notations, in order to facilitate automated
realization of test systems.

2. Foundations

2.1 Test architecture

The proposed test framework is based on a
component-based test architecture. This architecture is
intended for the testing of functional or operational
capabilities of a component-based system under test
(SUT). As shown in Figure 1, the SUT is considered to
be an integration of service components (SCs), which
must not be identical with the internal architecture of
the SUT, but can be any logical grouping of system
objects reasonable for system users. Parallel test
components (PTCs) are aligned to the identified SCs.
The coordination of PTCs during the test execution is

supported by a main test component (MTC). PTCs and
the MTC may be located on distributed nodes. The
setup of distributed test components is provided by
front ends (FEs). A test manager provides the control
of front ends and test components directly or indirectly
by human operators via a supervisory interface.

Such a test architecture is beneficial not only for the
functional design of test components, but also for the
modularity and scalability of the whole test system.

2.2 Separation of generic and user-defined test
systems

The test framework generalizes also test case
independent ac t iv i t ies such as set up of test
configurations, initiation of tests, coordination
between test components and collection of test results.
Thus, it is meaningful to separate a generic test system
from user-defined test systems:
• Generic test system (GTS) is the generalization of

the component-based test system. It contains test
case independent, but test process typical behavior
which can be shared between different test suites.

• A user-defined test system (UTS) is a specializa-
tion of the GTS. It adds aspects that are specific
for the system under test (SUT). Since the SUT
contains system specific descriptions used by the
UTS, the SUT is also part of the test framework.

2.3 Specification Technique

A description technique for the test framework is
desired to have the following properties:

 Figure 1 Component-based test architecture

Node Node

SCSCSCSC

System Under Test

Test Manager

Front End

MTC

Front End

PTC PTC PTC

• object-orientation to support the generalization-
specialization aspect;

• technology independence to ensure that the frame-
work can be realized with different technologies
for different application domains;

• ability to cover structural as well as behavioral
descriptions to allow adequate definition of test
systems;

• customizability;
• support by tools to allow automated generation of

executable test components.
The Unified Modeling Language (UML [6]) fulfils

these requirements. UML places few restriction on the
usage of the nota t ion . I t provides extens ion
mechanisms such as stereotypes, tagged values and
constraint s. D ue to the extension mechanisms,
“fragmentary , incomple te , incons is ten t , and
ambiguous models are easily produced without
violating any of the UML’s requirements” [1]. Thus,
the selection of the proper notations is important.

We use UML class diagrams for the structural
specification of GTS and UTS, where test system
components are described by classes, interfaces and
relationships. When SUT is specified in UML, static

information can be immediately shared with UTS.
For modeling the dynamic aspect of OO systems,

UML provides sequence, collaboration, statechart and
activity diagrams. Sequence and collaboration
diagrams visualize interactions between object
instances, while statechart and activity diagrams are of
interest when lifetime of objects is modeled1. Since
the test framework targets functional and operational
testing, where observable external behavior is
essential, sequence diagrams are primarily used .
Details of the test framework models are given in the
following section.

3. The test framework in UML

3.1 Generic test system

The GTS is modeled by computational objects
(COs). COs communicate via a set of interfaces,
which consists of a set of operations and attributes. An
interfaces can be declared together with a CO as
supported in the sense that the CO provides services
over it, or as required in case that it is provided by the

 Figure 2 Specification of the test Framework

o_FrontEnd
< < C O > >

i_FEManage
m ent

(from Interfaces)

<<suppor ts>>

i_FEManage
m ent

(f rom In ter faces)i_RegisterTC

(from Interfaces)

i_TMNot i fy

(from Interfaces)

i_TestContro
l

(from Interfaces)

i_TCManage
m ent

(from Interfaces)

o_TestManager
< < C O > >

<<requires>><<suppor ts>>

<<s u p p ort s>>

<<requires>>

<<requires>>

i_TMN ot i fy

(f rom Interfaces)

i_Tes tCon t ro
l

(from Interfaces)
i_MTC

(from Interfaces)

i_TestCoordi
nation

(from Interfaces)

o _ M T C
< < CO>>

<<requires>>

<<suppor ts>>

<<suppor ts>>

<<requires>>

i_M TC

(f rom Interfaces)

o _ P T C
< < C O > >

<<requires>>

i_TestCoordi
nation

(from Interfaces)

<<suppor ts>>

i_Tim er

(f rom In ter faces)

i_Tim erMana
gem ent

(f rom In ter faces)

i_Tim eOut

(from Interfaces)

o _ T i m er
< < C O > >

<<suppor ts>>

<<suppor ts>>

<<requires>>

i_TCManage
m ent

(from Interfaces)

i_RegisterTC

(from Interfaces)

i _T im eO ut

(from Interfaces)

i _T im er

(from Interfaces)

i_Tim erMana
gem e n t

(from Interfaces)

o_TC
<<CO>>

<<suppor ts>>

<<requires>>

<<suppor ts>>

<<requires>>

<<requires>>

1. [1] gives a thorough discussion on statechart-based test design for
class test. It is however not in the scope of this work.

CO’s environment.
The following COs of the GTS reflect the general

test architecture (see Figure 1):
o_TestManager represents the test manager. It

provides the interface i_RegisterTC to o_TC for the
registration of test components and the interface
i_TMNotify to o_MTC for notifications from the MTC,
e.g. submission of test results. It requires the interfaces
i_FEManagement, i_TCManagement and i_TestControl.

o_FrontEnd represents front ends. It provides the
interfaces i_FEManagement to o_TestManager for the
control of front ends.

o_TC is an abstract base for test components. It
supports the interfaces i_TimeOut to o_Timer for the
indicat ion of t imeout , and i _TCManagemen t to
o_TestManager for the l i fecycle control of test
c o m p o n e n t s . I t r e q u i r e s t h e i n t e r f a c e s
i_TimeManagement, i_Timer and i_RegisterTC.

o_MTC is a specialization of o_TC and provides the
functionality of the main test component (MTC). The
interfaces i_TestControl and i_MTC are supported.
i_TestControl allows o_TestManager the setup and
termination of test cases. i_MTC is used by o_PTC for
example to submit local test results. o_MTC requires
the interfaces i_TMNotify and i_TestCoordination.

o_PTC inherits also from o_TC. It is the base class of
parallel test components (PTCs). It provides o_MTC the
interface i_TestCoordination and uses the i_MTC interface
of o_MTC.

o_Timer is a t imer control and management
component. It allows o_TC to create timers over the
i_TimerManagement interface and the start, reset and
cancel of timers over the i_Timer interface.

The main flow of the GTS’s behavior is represented
by a set of sequence diagrams, where each of them
documents a partial view of the entire functionality.

Each of the following sequence diagram represents
one part of the test process:
• Establish Configuration fulfils the setup of a test

configuration that consists of a main and one or
more parallel test component(s). Test manager,
front end and test component are the involved
object instances (see Figure 3), represented
by::o_TestManager, ::o_FrontEnd and ::o_TC. In this
scenario, test manager calls startTC() at the
i_FEManagement interface of front end, passing the
name and the number of instance of the test com-
ponents to be created, as well as the reference to
the test manager’s i_Register interface. After the

instantiation, each test component registers itself
with the test manager, upon which an identifier for
the test component is returned.

• Test Initiation deals with the distribution of test
case specific behavior and parameters via the test
manager to test components. A test operator has
the opportunity to select test cases and set parame-
ters via the test manager’s supervisory interface.

• Generic Test Case contains the common initial
behavior of all test cases, which will be refined by
user-defined test system. That is, the main test
component requires the start of the test case on
every parallel test components. End Test repre-
sents the termination of a test case under normal
condition, while,

• Release Configuration is used when a test case is
interrupted. In case that a test component does not
respond, the test manager initiates the release of a
test configuration.
The logic between individual scenarios is depicted

by an activity diagram as shown in Figure 4. The
ac t iv i ty d iagram descr ibes the o rder o f t es t
configuration establishment, test initiation and test
case execution. Since the concrete test case is not
known by the GTS, Generic Test Case serves as a
placeholder that will be overloaded by a UTS. A test
case may have four outcomes:
• PASS: It is the verdict when the test purpose is ful-

filled;
• FAIL: It is assigned when the SUT does not

behave as defined by the test purpose;
• INCONCLUSIVE: It indicates unsuccessful test

execution due to test purpose independent reasons
that are captured by the test case.

• Abort without verdict. In contrast to the previous
three outcomes that yield orderly termination of
the test case, the fourth outcome does not result in

 Figure 3 Establish a configuration

 :
o_TestManager

 : i_RegisterTC : o_FrontEnd :
i_FEManagement

 : o_TC

 : Test Operator

startTC()

<<create>>

registerTC()

:t_TCId

establish Test Configuration

a test verdict. Intervention via the supervisory
interface or events that are not considered in the
test case may lead to a shut down of test compo-
nents by the test manager.

3.2 User-defined test system

A user-defined test system (UTS) refines the
generic test system. First of all, the UTS’s MTC and
PTCs inherit the generic MTC and PTC of the GTS.
The refinement focuses on the behavioral description.
It may consist of test case independent and test case
specific behavior. Further, if the UML model of the
SUT is available, it is merged with the test framework
model. In this manner, static information of the SUT
can be shared with the UTS.

The major dynamic model of a UTS is again
reflected in sequence diagrams for each test case. A
test case sequence diagram involves SUT, PTC and
timer instances.

The following section elaborates the generation of
test system source code from sequence diagram
descriptions of a UTS.

4. Code generation

4.1 Open issues with UML

Automated generation of UTSs require adequate
specifications. The UML sequence diagram used for
the behavioral description has restrictions to represent
the following aspects:
• Multiple instances. There may be more than one

instance of the same class taking part in a particu-
lar scenario.

• References. To perform the interaction between
two instances there must be a way to obtain the
reference of the target instance.

• Computations/decisions and handling of vari-
ables. For a particular sequence of operation calls,
output of one operation may be used as input for
the next operation. Some variables are required to
hold the values of the corresponding messages.

• Synchronization. Distributed test components
have to be synchronized.

• Timing. Especially for performance testing there
is a need to model timing constraints for message
invocations.
Most of the problems are already solved in the test

framework. However, the synchronization of test
components and the handling of multiple instances
(for performance testing) need further study.

4.2 Example test case

We discuss subsequently possible solutions1 for the
problems introduced above, with an example test case.
This test case is used for the functional testing of a
T I N A R e t a i l e r R e f e r e n c e P o i n t (R e t - R P)
implementation [10]. Ret-RP is the reference point
between the business roles consumer and retailer. The
purpose of the test case checkRET_RP is to test the
initial interaction which originates from a consumer to
establish an access session with the retailer by passing
valid user identification. The test case can also be used
for performance evaluation [3].

The SUT in this example is an implementation of
t h e r e t a i l e r d o m a i n R e t - R P . A P T C n a m e d
Customer_PTC plays an active role in the test case, i.e. it
controls and observes the behavior of the SUT. A
timer object to support the test execution is also
involved.

 Figure 4 Generic test activity model

Configuration
established

Establ ish
configuration

Test initiation

Generic test
case

FAIL

P A S S

INCONCLU
SIVE

End test

Relesae
configuration

Sequence Diagram:
Scenarien / Establish
Configuration

Sequence Diagram:
Scenarien / Test
Initiation

Sequence Diagram:
Scenarien / Generic
Test Case

Sequence Diagram:
Scenarien / End Test

Sequence Diagram:
Scenarien / Release
Configuration

1. Although the example code is provided in C++, other languages can
be also used for the implementation of test components.

The test case is described by a sequence diagram
(Figure 5). It represents the following behavior:
• Customer_PTC creates a timer instance and sets the

timer value, before
• a request on the operation requestNamedAccess() of

the i_RetailerInitial interface of the SUT is sent;
• a reply of requestNamedAccess() is received by the

Customer_PTC, which indicates the successful estab-
lishment of an access session (at this point in time,
the test purpose is fulfilled);

• Customer_PTC resets the timer, and
• releases the access session by sending an endAc-

cessSession() request;
• cancel of the timer terminates the test case.

4.3 Code structure

The general assumption we made for code
generation is, that each test case corresponds to one
sequence diagram. The sequence diagram represents
the flow of events from the test components to the
SUT and vice versa, which is assumed to be a valid
flow, i.e. a flow that finally produces the verdict
PASS.

Since each test component can be involved in more
than one test case, the behavior of a test component
with respect to a test case is defined in an own single
method of the class , which implements the test
component.

In the example, we have the class Customer_PTC and
the test case checkRET_RP. The method checkRET_RP()
has to be implemented for Customer_PTC in a way as
defined by the sequence diagram.

The actual test case is determined during the setup
phase of the framework. The test manager invokes the

method setTestBehavior() of the i_TCMangement interface
to determine the test case to be executed. After the
setup has been finished, the test components know,
which test case has to be performed and which method
has to be invoked.

The behavior of the test case is started by using the
beginTest() method of the i_TestControl interface
provided by the test manager.

In the following part of this section it is shown, how
the method checkRET_RP() can be generated to perform
the behavior of the test case.

The initial code of the class looks as follows:
class Customer_PTC:public PTC{
public:

CustomerPTC();
~CustomerPTC(){};
void checkRET_RP();
setVerdict(t_Verdict verdict);

}

4.4 Sequence of test events

The sequence of test events, which has to be
performed in the method checkRET_RP(), is determined
b y t h e s e q u e n c e d i a g r a m . T h e m e t h o d
requestNamedAccess() is invoked and after the result is
received, endAccessSession() is called.

However, a number of problems (references,
variables, exceptions) must be solved if the code
should be automatically generated from the diagram.
Subsequent sections 4.5, 4.6 and 4.7 will focus on
these problems.

Although not included in the example test case,
sometimes a test component has to wait for an external
invocation before it can continue its main behavior.
This is modelled by the operation waitFor() with the
name of the method and the interface at which the

 Figure 5 Test case example checkRET_RP

 :
C u s t o m e r _ P T C

 :
i_ R e t a i l e r I n i t i a l

: S U T : o_T im er : i_Tim e r : i _ T i m e O u t :
i _ T i m e r M a n a g e m e n t

 :
i _ R e t a i l e r N a m e d A c c e s s

r e q u e s t N a m e d A c c e s s (u s e r n a m e , u s e r p r o p s , i t f _ o u t , s e c r e t _ o u t , i d)

e n d A c c e s s S e s s i o n (a s S e c r e t I d , a s , o p t i o n)

newT ime r ()

se tT imer ()

rese tT ime r (i n l ong)

cance l T ime r ()

invocation is expected as parameters.
waitFor(„method_name“, “interface_name“);

The implementation of this operation will suspend
the execution of the current thread until an invocation
at an interface of the test component is received. In the
implementation of the called method, the suspended
thread will be activated. It then checks whether the
expected method was called and continue s its
execution, or simply returns with the verdict FAIL if
another method th an the expected one has been
invoked.

4.5 Exceptions

Each method which is invoked in the sequence of
actions between test components and the SUT can
cause exceptions. Some of the exceptions are defined
as user exceptions in the signature specifications of the
interfaces. Other exceptions are system exceptions
which may be raised in case of errors in the underlying
software, infrastructure or even hardware.

If a method does not answer with a normal reply as
indicated by the sequence diagram but raises an
exception, the test case cannot be completed
successfully. It has to be terminated. The verdict
depends on the kind of the exception:
• It is FAIL in case of a user exception.
• It is INCONCLUSIVE in case of a system excep-

tion.
If the test case should test whether the SUT raises

the proper exception in a certain situation i.e. if the
exception is the expected behavior, this has to be
specified in the sequence diagram explicitly.

4.6 Interface references

In order to make a call to an interface of the SUT, a
test component must obtain first a reference to the
interface. The sequence diagram defines exactly, with
which interfaces a test component communicates.
The se are in the example i _ R e t a i l e r I n i t i a l and
i_RetailerNamedAccess. For all those interfaces variables
are defined to hold interface references. The name of a
variable is either determined by the instance name in
the sequence diagram (if any) or generated by default
as <interface name>__Ref.

There are several possibilities to set values for the
variables. They may be obtained via a lookup in the
Name Service, or by using test case parameters or as
result of a previous operation invocation. This

information cannot be obtained directly from the
sequence diagram. It is modeled by additional
properties for each message in the diagram. It is
possible to set the manner how a value is determined
and additional parameters1 if required.

4.7 Variables

Variables are used for different purposes in the
implementation of a test component. They hold the
values of parameters for invoked operations, serve for
parameter passing from one operation to another, or
may be used to compare expected and received results
of calls. Variables are declared as attributes of the
class specification to which they belong.

It is possible to use the declared variables (attributes
of the UML class) as parameters of operation
invocations in the sequence diagrams. This enables the
automatic code generation. If values must be assigned
to variables prior to operation invocations, and this can
not be done as part of an initialisation specification, an
additional mechanism is required. Since a sequence
diagram by default does not provide a possibility to
provide the needed code, we have extended the
specification of messages and introduced additional
properties preMessageCode and postMessageCode. Those
properties may hold text values, which then contain
the code for the variable assignment.

The preMessageCode for requestNamedAccess() looks as
follows:

username = „user1“;
userprops.length(1);
userprops[0].name="password";
userprops[0].value <<= "";

Another possibility instead of using preMessageCode
and postMessageCode would be to generate the code of a
test component only partially and insert the additional
code directly into the generated fragment.

4.8 Decisions

Sometimes the success of an operation depends on
the returned value of the operation. Thus, a kind of
decision possibility in the code is needed. This
problem cannot be solved directly using sequence
diagrams. The same mechanism as for variables is
proposed. That is to use the properties preMessageCode
and postMessageCode to hold the code for the decisions

1. For example in case of a Naming Service, a parameter is the name of
the naming context.

to be made.

4.9 Timing

The sequence diagram for a test case uses an
instance of the object o_Timer for the management of
timers. At the interfaces of this object it is possible to
get new timers, and to set, reset or cancel timers. If a
timeout occurs, a message from the timer object to the
i_TimeOut interface of the PTC that uses the timer is
sent. Per definition, each PTC has such an interface
instance for each running timer. If the method timeOut()
is called when not expected, i.e. it was not specified in
the sequence diagram, the method setVerdict() is
i n v o k e d e i t h e r w i t h t h e v e r d i c t F A I L o r
INCONCLUSIVE. Which verdict is assigned, must be
specified by the user. Therefore, it is possible to assign
an additional property to the setTimer() message
specification in the sequence diagram which holds the
verdict as value.

If timeout is specified in the sequence diagram as a
test event, then waiting for a timeout is implemented
like any other event using the method waitFor().

 The whole timer concept has been modeled as part
of the test framework. Hence, the problem of timing is
solved by explicit modeling of the timer object.

4.10 Implementation of the code generator

The code generator who’s principles are discussed
above was implemented in a plug-in technology for
existing UML tools. The interface of an existing UML
tool was used to get all information from the UML
model of a UTS, which is needed to generate code for
the UTS. Although the code generator itself is
independent from a specific UML tool, we have used
Rational ROSE to implement it. This tool provides a
Microsoft COM-interface to access the UML model. It
allows also to define additional properties for model
elements.

5. Conclusions
In this paper a test framework has been specified

that is based on an architecture that allows the control
of distributed test components.

In this test framework, test purpose independent
aspects are extracted by a generic test system (GTS),
so that developers of user-defined test systems (UTSs)
can concentrate on only those aspects that are specific
for the system under tests (SUTs).

The in tend of the test framework is to support

automated generation of code for UTSs. The Unified
Modelling Language (UML) is selected for the
specification of GTS and UTSs. The static models of
test systems are described by class diagrams, while
sequence diagrams are mainly used for the behavioral
specification.

Restrictions of UML sequence diagrams are
discussed. Practical solutions facilitating code
generation are presented. The test framework was
applied to a simple test example.

We will continue the investigation of distributed
test systems by using it for more complex cases, for
example for performance evaluation of object-
oriented systems.

6. References
[1] R. V. Binder, “Testing Object-Oriented Systems, Models, Pat-

terns and Tools”, Addison-Wesley, 1999.
[2] M. Benattou, L. Cacciari, R. Pasini, O. Rafiq, “Principles and

Tools for Testing Open Distributed Systems”, in Proc. of the
12th Intern. Workshop on Testing of Communicating Systems,
Budapest, Hungary, Sept. 1999.

[3] M. Born, A. Hoffmann, I. Schieferdecker, Th. Vassiliou-Gi-
oles, M. Winkler, “Performance Testing of a TINA Platform”,
in Proc. of TINA’99, Hawaii, USA, April 1999.

[4] U. Buy, C. Ghezzi, A. Orso, M. Pezze, and M. Valsasna, “A
Framework for Testing Object-Oriented Components”, Proc.
of the First Intern. ICSE Workshop on Testing Distributed
Component-Based Systems, Los Angeles, U.S.A, May 1999.

[5] ETSI TC-MTS, “Methods for Testing and Specification
(MTS), Test Synchronization, Architectural Reference, Test
Synchronization Protocol 1 (TSP1) Specification”, ETSI
Tech-nical Report ETR 303, Sophia Antipolis, Jan. 1997.

[6] ITU-T X.903, ISO/IEC 10746-3, “Open Distributed Process-
ing - Reference Model, Part 3”, Geneva, Swiss, 1997.

[7] ITU-T Z.130, “Object Definition Language”, Geneva, Swiss,
Mar. 1999.

[8] OMG, “Common Object Request Broker Architecture (COR-
BA)”, ver. 2.3, 1999.

[9] OMG, “Unified Modeling Language (UML)”, ver. 1.3, 1999.
[10]TINA-C, “Ret Retailer Reference Point Specification”, ver.

1.1, 1999.
[11]A. Ulrich, “Test Case Generation and Test Realization in Dis-

tributed Systems”, PhD Thesis (in german only), Otto-von-
Guericke-University Magdeburg, Germany, 1998.

[12]T. Walter, I. Schieferdecker, J. Grabowski: Test Architectures
for Distributed Systems - State of the Art and Beyond (Invited
Paper). - In Proc. of the 11th Intern. Workshop on Testing of
Communicating Systems, Tomsk, Russia, Sept. 1998.

